
Recitation 7. April 27

Focus: algebraic & geometric multiplicity, Jordan normal form, complex eigenvalues & eigenvectors,
symmetric matrices

Given an n× n matrix A and an eigenvalue λ, then its:

algebraic multiplicity = multiplicity of λ as a root of the characteristic polynomial

geometric multiplicity = dimension of N(A− λI)

In general, we have the following inequality for all eigenvalues of A:

algebraic multiplicity ≥ geometric multiplicity

If the inequality above is an equality for all eigenvalues λ of A, then Rn has a basis consisting only of eigenvectors,
hence we can diagonalize the matrix A:

A = V DV −1

where V is the matrix whose columns are eigenvectors, and D is the diagonal matrix with the eigenvalues on the
diagonal. Even if the matrix A is not diagonalizable, we can always write it as:

A = V


J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jt

V −1

where each Ji is a Jordan block of the form:

λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
0 0 0 λ . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . λ


As the eigenvalues are roots of the characteristic polynomial, quite often it turns out that they are complex numbers :

z = a+ bi

where a, b ∈ R and i is a symbol that satisfies the relation i2 = −1. Recall the following notions:

complex conjugate : a+ bi = a− bi

absolute value : |a+ bi| =
√
a2 + b2

You may go back and forth between Cartesian coordinates a, b and polar coordinates r, θ:{
r =
√
a2 + b2

θ = arccos
(

a√
a2+b2

) ⇔

{
a = r cos θ

b = r sin θ

So with this in mind, we get the formula:

a+ bi = r(cos θ + i sin θ) = reiθ

Symmetric n× n matrices are always diagonalizable with real eigenvalues and orthonormal eigenvectors:

S = QDQ−1 = QDQT



1. Which of the following matrices are diagonalizable? What are the algebraic and geometric multiplicities of the
eigenvalues?

A =

[
1 1
0 3

]
, B =

[
3 0
0 3

]
, C =

[
2 1
0 2

]

Solution: The characteristic polynomial of A is (1 − λ)(3 − λ) − 1 · 0 = (1 − λ)(3 − λ). The eigenvalues
are 1 and 3, each with algebraic multiplicity 1. Since geometric multiplicities are at least 1 and at most the
algebraic multiplicities, we learn that the geometric multiplicities are also 1 and A is diagonalizable.

The characteristic polynomial of B is (3 − λ)2. The sole eigenvalue is 3, with algebraic multiplicity 2. Since
B − 3I is the 0 matrix, its nullspace is 2-dimensional, so the eigenvalue 3 has geometric multiplicity 2. It
follows that B is diagonalizable (in fact, it is diagonal).

The characteristic polynomial of C is (2 − λ)2. The sole eigenvalue is 2, with algebraic multiplicity 2. The
matrix C − 2I has rank 1 and nullspace of dimension 1. Thus, the eigenvalue 2 has geometric multiplicity 1,
and C is not diagonalizable. In the language of the lecture notes, C is a Jordan block.

2. Consider the matrix:

A =

[
1 1
−1 −1

]
and calculate eA = I +A+ A2

2! + A3

3! + . . . .

Solution: As we have seen, to compute the powers of a matrix, the easiest way is to diagonalize it:

if A = V

[
λ1 0
0 λ2

]
V −1 then An = V

[
λn1 0
0 λn2

]
V −1

If this were the case, we would have eA = V

[
eλ1 0
0 eλ2

]
V −1, quite a nice formula.

However, things are not so simple in this case, since the matrix A is not diagonalizable. Indeed, its character-
istic polynomial is:

p(λ) = det

[
1− λ 1
−1 −1− λ

]
= (1− λ)(−1− λ)− (−1) = λ2

so the only eigenvalue is 0, with multiplicity 2. Since A is not the 0 matrix, this eigenvalue can only have
multiplicity 1, hence A is not diagonalizable.

However, not all is lost. We can still put A in Jordan normal form. First we compute an eigenvector:

(A− 0I)v1 = 0 ⇒ v1 =

[
1
−1

]
Then we compute a vector v2 such that:

(A− 0I)v2 = v1 ⇒
[

1 1
−1 −1

] [
x
y

]
=

[
1
−1

]
RREF⇒

[
1 1
0 0

] [
x
y

]
=

[
1
0

]

So we may choose v2 =

[
1
0

]
. Then if we consider the matrix:

V =
[
v1 v2

]
=

[
1 1
−1 0

]
we have:

A = V JV −1 where J =

[
0 1
0 0

]



As before, we have eA = V eJV −1. However, eJ is easy to compute because J2 = 0, hence:

eJ = I + J =

[
1 1
0 1

]

We conclude that eA = V

[
1 1
0 1

]
V −1 =

[
2 1
−1 0

]
.

3. Consider the matrix:

X =

0 1 0
0 0 1
1 0 0


Find its eigenvalues and eigenvectors. How many eigenvalues are complex? Are there complex conjugate pairs?

Solution: Considering the characteristic polynomial of X, we get:

p(λ) = det(X − λI) = 1− λ3

(you can compute the latter in many ways, but cofactor expansion is particularly simple, since the matrix has
many zeroes). This polynomial factors as:

p(λ) = (1− λ)(λ2 + λ+ 1) = (1− λ)

(
λ− −1 +

√
3i

2

)(
λ− −1−

√
3i

2

)

Hence there is a real eigenvalue, namely 1, and two complex conjugate eigenvalues −1±
√
3i

2 .

The real eigenvalue 1 has eigenvector

1
1
1

 , which is easy to see.

The other two eigenvalues are the roots of unity of order 3, namely ω = e
2πi
3 and ω2 = e

4πi
3 . Their eigenvectors

are:  1
ω
ω2

 and

 1
ω2

ω


respectively.

4. Consider the matrix:

Y =

1 1 1
1 1 1
1 1 1


• Can you find an easy eigenvalue without computing the characteristic polynomial?

• Compute all eigenvectors for the above easy eigenvalue

• Can you use this to determine the remaining eigenvector and eigenvalue?

Solution: Note that the matrix Y is singular, hence it has an eigenvalue 0. Further note all the columns are
the same, so 0 has a 2-dimensional vector space of eigenvectors, with basis given by: 1

−1
0

 and

 1
1
−2


(basically, the subspace of eigenvectors for the eigenvalue 0 are all 3-component vectors with the sum of the
entries 0).



We have one more eigenvalue. To compute it, recall that the sum of the eigenvalues of a matrix is equal to its
trace, and clearly Tr Y = 3. This implies that the third eigenvalue is 3, since the other eigenvalue is 0 with
multiplicity two.

As for the eigenvector corresponding to 3, we note that it has to be orthogonal to the eigenvectors corresponding
to 0 (since the matrix is symmetric). Since the latter span the two-dimensional subspace consisting of vectors
with the sum of entries equal to 0, the only possibility is for the eigenvector corresponding to 3 to be:1

1
1




