Recitation 7. April 27

Focus: algebraic \mathcal{G} geometric multiplicity, Jordan normal form, complex eigenvalues \mathcal{G} eigenvectors, symmetric matrices

Given an $n \times n$ matrix A and an eigenvalue λ, then its:

$$
\begin{aligned}
& \text { algebraic multiplicity }=\text { multiplicity of } \lambda \text { as a root of the characteristic polynomial } \\
& \text { geometric multiplicity }=\text { dimension of } N(A-\lambda I)
\end{aligned}
$$

In general, we have the following inequality for all eigenvalues of A :

$$
\text { algebraic multiplicity } \geq \text { geometric multiplicity }
$$

If the inequality above is an equality for all eigenvalues λ of A, then \mathbb{R}^{n} has a basis consisting only of eigenvectors, hence we can diagonalize the matrix A :

$$
A=V D V^{-1}
$$

where V is the matrix whose columns are eigenvectors, and D is the diagonal matrix with the eigenvalues on the diagonal. Even if the matrix A is not diagonalizable, we can always write it as:

$$
A=V\left[\begin{array}{c|c|c|c}
J_{1} & 0 & \cdots & 0 \\
\hline 0 & J_{2} & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & \cdots & J_{t}
\end{array}\right] V^{-1}
$$

where each J_{i} is a Jordan block of the form:

$$
\left[\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \ldots & 0 \\
0 & \lambda & 1 & 0 & \ldots & 0 \\
0 & 0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \lambda
\end{array}\right]
$$

As the eigenvalues are roots of the characteristic polynomial, quite often it turns out that they are complex numbers:

$$
z=a+b i
$$

where $a, b \in \mathbb{R}$ and i is a symbol that satisfies the relation $i^{2}=-1$. Recall the following notions:

$$
\begin{aligned}
& \hline \text { complex conjugate }: \overline{a+b i}=a-b i \\
& \hline \text { absolute value }:|a+b i|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

You may go back and forth between Cartesian coordinates a, b and polar coordinates r, θ :

$$
\left\{\begin{array} { l }
{ r = \sqrt { a ^ { 2 } + b ^ { 2 } } } \\
{ \theta = \operatorname { a r c c o s } (\frac { a } { \sqrt { a ^ { 2 } + b ^ { 2 } } }) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=r \cos \theta \\
b=r \sin \theta
\end{array}\right.\right.
$$

So with this in mind, we get the formula:

$$
a+b i=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

Symmetric $n \times n$ matrices are always diagonalizable with real eigenvalues and orthonormal eigenvectors:

$$
S=Q D Q^{-1}=Q D Q^{T}
$$

1. Which of the following matrices are diagonalizable? What are the algebraic and geometric multiplicities of the eigenvalues?

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Solution: The characteristic polynomial of A is $(1-\lambda)(3-\lambda)-1 \cdot 0=(1-\lambda)(3-\lambda)$. The eigenvalues are 1 and 3 , each with algebraic multiplicity 1 . Since geometric multiplicities are at least 1 and at most the algebraic multiplicities, we learn that the geometric multiplicities are also 1 and A is diagonalizable.

The characteristic polynomial of B is $(3-\lambda)^{2}$. The sole eigenvalue is 3 , with algebraic multiplicity 2 . Since $B-3 I$ is the 0 matrix, its nullspace is 2 -dimensional, so the eigenvalue 3 has geometric multiplicity 2 . It follows that B is diagonalizable (in fact, it is diagonal).

The characteristic polynomial of C is $(2-\lambda)^{2}$. The sole eigenvalue is 2 , with algebraic multiplicity 2 . The matrix $C-2 I$ has rank 1 and nullspace of dimension 1 . Thus, the eigenvalue 2 has geometric multiplicity 1 , and C is not diagonalizable. In the language of the lecture notes, C is a Jordan block.
2. Consider the matrix:

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

and calculate $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$.

Solution: As we have seen, to compute the powers of a matrix, the easiest way is to diagonalize it:

$$
\text { if } A=V\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] V^{-1} \quad \text { then } A^{n}=V\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right] V^{-1}
$$

If this were the case, we would have $e^{A}=V\left[\begin{array}{cc}e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{2}}\end{array}\right] V^{-1}$, quite a nice formula.
However, things are not so simple in this case, since the matrix A is not diagonalizable. Indeed, its characteristic polynomial is:

$$
p(\lambda)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & -1-\lambda
\end{array}\right]=(1-\lambda)(-1-\lambda)-(-1)=\lambda^{2}
$$

so the only eigenvalue is 0 , with multiplicity 2 . Since A is not the 0 matrix, this eigenvalue can only have multiplicity 1 , hence A is not diagonalizable.
However, not all is lost. We can still put A in Jordan normal form. First we compute an eigenvector:

$$
(A-0 I) \boldsymbol{v}_{1}=0 \quad \Rightarrow \quad \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Then we compute a vector \boldsymbol{v}_{2} such that:

$$
(A-0 I) \boldsymbol{v}_{2}=\boldsymbol{v}_{1} \Rightarrow\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \stackrel{\mathrm{RREF}}{\Rightarrow} \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

So we may choose $\boldsymbol{v}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then if we consider the matrix:

$$
V=\left[\boldsymbol{v}_{1} \mid \boldsymbol{v}_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]
$$

we have:

$$
A=V J V^{-1} \quad \text { where } \quad J=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

As before, we have $e^{A}=V e^{J} V^{-1}$. However, e^{J} is easy to compute because $J^{2}=0$, hence:

$$
e^{J}=I+J=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

We conclude that $e^{A}=V\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] V^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$.
3. Consider the matrix:

$$
X=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find its eigenvalues and eigenvectors. How many eigenvalues are complex? Are there complex conjugate pairs?

Solution: Considering the characteristic polynomial of X, we get:

$$
p(\lambda)=\operatorname{det}(X-\lambda I)=1-\lambda^{3}
$$

(you can compute the latter in many ways, but cofactor expansion is particularly simple, since the matrix has many zeroes). This polynomial factors as:

$$
p(\lambda)=(1-\lambda)\left(\lambda^{2}+\lambda+1\right)=(1-\lambda)\left(\lambda-\frac{-1+\sqrt{3} i}{2}\right)\left(\lambda-\frac{-1-\sqrt{3} i}{2}\right)
$$

Hence there is a real eigenvalue, namely 1, and two complex conjugate eigenvalues $\frac{-1 \pm \sqrt{3} i}{2}$.
The real eigenvalue 1 has eigenvector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, which is easy to see.
The other two eigenvalues are the roots of unity of order 3 , namely $\omega=e^{\frac{2 \pi i}{3}}$ and $\omega^{2}=e^{\frac{4 \pi i}{3}}$. Their eigenvectors are:

$$
\left[\begin{array}{c}
1 \\
\omega \\
\omega^{2}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega
\end{array}\right]
$$

respectively.
4. Consider the matrix:

$$
Y=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

- Can you find an easy eigenvalue without computing the characteristic polynomial?
- Compute all eigenvectors for the above easy eigenvalue
- Can you use this to determine the remaining eigenvector and eigenvalue?

Solution: Note that the matrix Y is singular, hence it has an eigenvalue 0. Further note all the columns are the same, so 0 has a 2-dimensional vector space of eigenvectors, with basis given by:

$$
\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

(basically, the subspace of eigenvectors for the eigenvalue 0 are all 3 -component vectors with the sum of the entries 0).

We have one more eigenvalue. To compute it, recall that the sum of the eigenvalues of a matrix is equal to its trace, and clearly $\operatorname{Tr} Y=3$. This implies that the third eigenvalue is 3 , since the other eigenvalue is 0 with multiplicity two.
As for the eigenvector corresponding to 3 , we note that it has to be orthogonal to the eigenvectors corresponding to 0 (since the matrix is symmetric). Since the latter span the two-dimensional subspace consisting of vectors with the sum of entries equal to 0 , the only possibility is for the eigenvector corresponding to 3 to be:

